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ABSTRACT
This paper presents a novel system for 3D scene reconstruction and obstacle detection for visually impaired people,
which is based on Microsoft Kinect. From the depth image of Kinect a 3D point cloud is calculated. By using both,
the depth image and the point cloud a gradient and RANSAC based plane segmentation algorithm is applied. After
the segmentation the planes are combined to objects based on their intersecting edges. For each object a cuboid
shaped bounding box is calculated. Based on experiments the accuracy of the presented system is evaluated. The
achieved accuracy is in the range of few centimeters and thus sufficient for obstacle detection. Besides, the paper
gives an overview about already existing navigation aids for visually impaired people and the presented system is
compared to a state of the art system.
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1 INTRODUCTION

For safe traveling in known and unknown environments
blind as well as visually impaired people depend on
travel assistance devices. Until now the white cane and
the guide dog are the most popular ones. Nevertheless,
both the white cane and the dog are not able to detect
suspended objects, which are hanging at head height
in front of the visually impaired person. Besides, the
range, especially of a white cane, is limited to one to
two meters and a dog often cannot be used indoor. Al-
ternatively, or supportive to these conventional devices,
electronic navigation devices can be used. In this pa-
per we are especially interested in so called electronic
travel aids (ETAs), which are devices that do not require
any additional infrastructure like GPS and man-made
landmarks or prior knowledge about the environment.
Other systems can be categorized in electronic orienta-
tion aids (EOAs) and position locator devices (PLDs).
EOAs provide information to reach a certain destina-
tion. This can be offline information (e.g. the floor plan
of a building) as well as online information (e.g. a con-
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tinuous tracking of the position within a given map).
PLDs are used for positioning (e.g. GPS) and thus of-
ten are applied within an EOA.

The main goal of an ETA is to warn a visually impaired
person about upcoming obstacles and impart percep-
tion of her or his surroundings. Even though there exist
plenty of assistance devices, most of them are not well
accepted by the community of the blind and visually
impaired. Most of the existing ETAs warn the user only
about obstacles right in front of her or him but do not
give any further perception about the person’s environ-
ment. Other camera based systems try to impart per-
ception of the scene but tend to overwhelm the user’s
senses by conveying redundant information. Section 2
gives a short overview about existing systems and re-
search projects.

The idea of this paper is to develop a system which
records the blind person’s environment and reduces the
recording to a minimum amount of significant informa-
tion. To record the environment Microsoft Kinect is
used. The advantages of Kinect compared to other cam-
era systems is its low price as well as the extensive soft-
ware development kit (SDK). Thus, Kinect gives the
ability to develop a low priced prototype system with-
out a long familiarization period, making it ideal for
rapid prototyping.

Based on the depth image of Kinect, an algorithm is de-
veloped which detects obstacles in a scene and models
them by a small number of cuboid objects. The infor-



mation needed to describe these cuboids easily can be
modulated onto stereo audio signals for example.

Although the algorithm is developed based on the depth
image captured by Kinect, it can be applied to any other
depth images. Thus, the presented system is ideal to
verify the feasibility of the proposed idea and the pre-
sented algorithm easily can be combined with other
depth camera systems, e.g. a stereo camera system or a
plenoptic camera included in glasses.

The presented algorithm first performs a plane segmen-
tation. This segmentation is a combination of a gradi-
ent based 2D image segmentation and a random sam-
ple consensus (RANSAC) based plane segmentation
[Fis81a], which is applied to the 3D point cloud. The
plane segmentation will be described in Section 3. The
second step of the algorithm is the object modeling and
thus the reconstruction of the recorded scene. This ap-
proach is based on finding intersecting edges between
neighboring plane segments. The object modeling will
be presented in Section 4. In Section 5 the algorithm is
analyzed based on its accuracy and Section 6 shows the
results of the system applied in test environments. Sec-
tion 7 compares our system to a state of the art system
[Rod12a] and Section 8 draws conclusions.

2 STATE OF THE ART
This section gives an overview about already exist-
ing ETA systems. Beside some commercially avail-
able tools, there exists a variety of research activi-
ties focusing on ETAs. In [Dak10a] Dakopoulos and
Bourbakis give a good overview about already existing
ETAs, as well as research activities in this field. Man-
duchi and Coughlan [Man12a] present a more general
overview about electronic assisting devices for blind
people. Most of the commercially available systems
rely on distance sensors for detecting obstacles within
the surroundings of a blind person. K-Sonar [Zab06a]
for example is a tool which uses ultrasonic sensors to
perceive obstacles in front of the user. The received in-
formation is conveyed to the user by stereo headphones.
K-Sonar either can be used as hand held device or can
be mounted on a long cane. A similar system as K-
Sonar is the Laser Long Cane [Rit01a, Rit02a] from
Vistac GmbH [Vis13a]. In this system laser distance
sensors are attached to a long cane. The sensors mon-
itor the area in front of the user on upper body height.
The system warns the user by vibrations in the sensor
device about obstacles.

Beside these commercially available products, there ex-
ist various research projects, which are focusing on dis-
tance sensor based ETAs. Manduchi and Yuan are de-
veloping a system for detecting steps using laser dis-
tance sensors [Yua04a, Yua05a]. Dunai et al. work on
a system called CASBliP [Dun12a]. This tool is based

on a time-of-flight (TOF) line scan camera. The cam-
era scans a horizontal plane in front of the blind user
and transforms it into stereo audio signals. One big ad-
vantage of this system is the long range of about 15 m.

Other ultrasonic based systems are NavBelt and Guide-
Cane developed by Shoval et al. [Sho03a]. Both sys-
tems are based on the same ultrasonic sensors, which
scan the surroundings. In the NavBelt system the sen-
sors are attached to a belt, which is carried by the user.
GuideCane is a small vehicle at the end of a long cane
on which the sensors are arranged. Based on the sen-
sor data, signal processing algorithms calculate a safety
path in traveling direction. In the NavBelt system, the
user is informed about the safety path by audio signals,
while GuideCane steers into the direction of this path.
One big disadvantage of GuideCane is that the system
is not able to pass or detect steps.

Other ultrasonic systems, like the project of Cardin et
al. [Car05a] use tactile feedback to transmit the sensor’s
information.

More sophisticated than systems based on distance sen-
sors are camera based systems. These systems try to
convey perception of the users environment instead of
just cautioning against upcoming obstacles. One com-
mercially available system is vOICe [vOI13a]. Here
the image of a camera, which is arranged in glasses, is
transformed into spatial audio signals. These signals
are presented to the user by headphones. Gonzalez-
Mora et al. focus on a similar idea. In [Gon06a] a
system is described which uses Head Related Transfer
Functions (HRTFs) to modulate audio signals with the
image information. Even though these systems show
promising results, interpreting those signals involves a
long lasting training period. Besides, the often very
sensitive aural sense of blinds cannot be used for other
tasks. Thus, other systems try to reduce the camera data
to a small amount of significant information before it is
transmitted to the user. Dakopoulos for example de-
scribes in his PhD-thesis a prototype system [Dak09a]
that uses a binocular stereo camera to receive a depth
image of the scene in front of the user. The depth im-
age is reduced to a resolution of 4 pixel×4 pixel. This
depth information is presented to the user by a 4×4
vibration motor array, which is attached to her or his
stomach.

Saez Martinez and Escolano Ruiz also work on a stereo
camera based system for obstacle detection [Sae08a].
Here, algorithms are used to combine sequences of
depth images to a 3D-map. For obstacle detection
the user’s motion is estimated based on the image se-
quences and thus obstacles in travel direction are de-
tected. However, the system only warns the user about
upcoming obstacles and does not use the image infor-
mation for scene percipience.



Rodriguez et al. describe another stereo camera based
system [Rod12a]. A short description of this approach
is given during the comparison in Section 7.

Most of the camera based systems developed so far
mainly focus on detecting obstacles with more or less
high spatial resolution. Thus, they can prevent the user
from being overwhelmed by a huge amount of data. But
thereby they also reduce very much the conveyed infor-
mation. We in contrast are interested in remodeling the
recorded scene. This later will give us the opportunity
to classify the remodeled objects. For example by clas-
sifying a number of steps as a stairway, which otherwise
would be considered as an insuperable obstacle. Thus,
we can provide to the user a high amount of information
with limited amount of data.

3 DEPTH IMAGE PLANE SEGMENTA-
TION

A pixel in the depth image is defined by its 2D image
coordinates xI and yI and will be denoted by the vector
XI = (xI ,yI)

T in this paper. Each pixel contains a depth
value d, which represents the distance to the corre-
sponding object point. In the following the depth value
for a pixel XI will be denoted by d(XI) or d(xI ,yI).

The 3D world coordinate system is defined based on
the orientation and position of Kinect. A point in the
world coordinate system is defined by the coordinates
xW , yW , and zW and will be denoted by the vector XW =
(xW ,yW ,zW )T . All three coordinates (xW , yW , and zW )
have the unit centimeter.

3.1 Gradient based depth image segmen-
tation

The gradient based depth image segmentation is used
to perform a rough preprocessing, which reduces false
segmentation during the RANSAC algorithm. Besides,
the gradient based algorithm is very sensitive in de-
tecting small steps, which could be disregarded by the
RANSAC algorithm. To perform the algorithm, out of
the depth image d(XI), its gradient vector ~g(XI) is cal-
culated. The gradient vector ~g(XI) can be calculated
based on any common gradient filter (e.g. Sobel or
Canny operator). For the experiments presented in Sec-
tions 5 and 6 the gradient vector ~g(XI) is defined as
given in eq. (1). This gradient definition is very sensi-
tive on small edges and steps since no low pass filtering
is applied to the depth image. Compared to the Sobel
and Canny operator the computation time of the filter
in eq. (1) is very low. Besides, the calculated gradient
does not have to be very accurate since after the gra-
dient based segmentation the RANSAC algorithm per-
forms an accurate plane segmentation.

~g(XI) =

(
d(xI +1,yI)−d(xI ,yI)
d(xI ,yI +1)−d(xI ,yI)

)
(1)

After calculating the gradient vector~g(XI), it is filtered
by a median filter. The median filter reduces the number
of outlying values caused by interpolation artifacts and
quantization errors.

For segmentation each pixel is compared with each of
its four neighboring pixels. Two neighboring pixels Xi

I
and X j

I are assigned to the same segment if the follow-
ing two conditions are satisfied:

1. The norm of the difference vector ∆g between~g(Xi
I)

and~g(X j
I ) has to be below a threshold Tg.

∆g =
∥∥∥~g(Xi

I
)
−~g
(

X j
I

)∥∥∥ (2)

2. The difference ∆d between the real depth value
d(X j

I ) and the estimated depth value d̂(X j
I ) at the

position X j
I has to be below a threshold Td .

∆d =
∣∣∣d(X j

I

)
− d̂
(

X j
I

)∣∣∣ (3)

d̂
(

X j
I

)
= d

(
Xi

I
)
+~g
(
Xi

I
)T ·

(
x j

I − xi
I

y j
I − yi

I

)
(4)

3.2 Depth image to point cloud transfor-
mation

As already mentioned above, the RANSAC algorithm
will be performed based on a set of 3D points in world
coordinates. Thus, each pixel in the depth image XI has
to be transformed into a 3D point in world coordinates
XW . This is done based on the transformation matrix
A, which is a 4×4 matrix defined in eq. (5). The trans-
formation defined by A is a combination of a rotation, a
translation and the central projection performed by the
camera. To describe the non-linear central projection by
a system of linear equations the homogeneous compo-
nent k has to be introduced as a fourth dimension. For
the given definition it is considered that the unit vector
of the depth component ~ed is orthogonal to the image
plane but independent of the homogenous component k
as given in eq. (5).

k · xI
k · yI

d
k

= A ·


xW
yW
zW
1



=


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 1

 ·


xW
yW
zW
1

 (5)

From the system of equations given in eq. (5) the equa-
tions (6) and (7) are received by inserting the fourth
row into the first and second and rearranging them af-
terwards. Eq. (8) is received as the third row in eq. (5).



Since all three equations are linear in the coefficients of
A and image as well as world coordinates can be mea-
sured by calibration points, all 15 coefficients of A can
be estimated by linear regression.

xI = a11 · xW +a12 · yW +a13 · zW +a14

−a41 · xW xI−a42 · yW xI−a43 · zW xI (6)
yI = a21 · xW +a22 · yW +a23 · zW +a24

−a41 · xW yI−a42 · yW yI−a43 · zW yI (7)
d = a31 · xW +a32 · yW +a33 · zW +a34 (8)

Equivalently to the image points XI in the 2D segmen-
tation the 3D points XW can be aligned in segments.

3.3 RANSAC plane segmentation
After all pixels XI are projected into 3D points XW , to
the 3D points of each segment the RANSAC algorithm
[Fis81a] is applied.

RANSAC is an iterative method to robustly estimate
a certain model from a number of measurements. In
our application RANSAC is used to fit planes to the 3D
point cloud XW .

In each iteration step the algorithm randomly picks
three sample points (X1

W , X2
W , and X3

W ) out of the set
of input points and defines a plane Π fitting these three
points. For each point XW in the set the distance dΠ to
the plane Π is calculated. It is checked whether the dis-
tance dΠ is underneath a threshold TRAN or not. Points
with a distance dΠ smaller than TRAN are considered to
be part of the estimated plane. All other points are con-
sidered to be outliers. This procedure is repeated Ntrials
times to find the best fitting plane. Best fit is defined in
the sense of lowest number of outliers.

The number Ntrials of iteration steps which are needed
to reach convergence can be calculated as follows: If
we consider that an iteration step results in nIN inliers
by a total number of nPT S points in the input set, the
probability that all three independently picked samples
(X1

W , X2
W , and X3

W ) are inliers can be estimated as given
in eq. (9).

P(all 3 samples are inliers)≈
(

nIN

nPT S

)3

(9)

From eq. (9) the probability that at least one of the three
samples is an outlier is given in eq. (10).

P(at least 1 sample is an outlier) =
1−P(all 3 samples are inliers) (10)

We define the constraint that with a certain probability,
which is denoted by p in eq. (11), there must be at least
one trial without any sample being an outlier. With this

constraint the number of trials needed can be calculated
as follows.

Ntrails =⌈
log(1− p)

log(P(at least 1 sample is an outlier))

⌉
(11)

For the experiments presented in Sections 5 and 6 the
probability, that at least one trial occurs where none of
the three samples is an outlier, was set to p = 0.99.

The number of inliers nIN in eq. (9) does not result from
the best fitting plane Πn but from a randomly chosen
plane Π. Thus the minimum needed number of trails
Ntrails is always overestimated except for the case that
the plane Π is already the best fitting plane.

The RANSAC algorithm results in an estimated plane
Πn, a set of inliers, which builds a new segment and a
set of outliers. To the set of outliers again the RANSAC
algorithm is applied until the number of outliers is un-
derneath a defined minimum segment size.

4 OBJECT MODELING
Based on the plane segments, geometric objects are
modeled. This is done by combining planes to objects.
At the current state of the algorithm only cuboid ob-
jects are modeled. Most scenarios where people move
are dominated by man-made objects, which can be de-
scribed more or less by cuboids. In further development
steps it will be considered to include also different geo-
metric shapes (e.g. cylinders or spheres). However, for
obstacle warning, cuboid objects are sufficient. The ob-
ject modeling is divided in several steps. In the first step
intersecting edges between neighboring planes are cal-
culated. Then the floor plane is detected and extracted.
In the third step the cuboid objects are modeled out of
the plane segments and the intersecting edges.

4.1 Plane intersection
Since, by definition, a plane has infinite extent, there
always exists an intersecting edge between any two
planes which are not parallel to each other. The chal-
lenge in the intersecting edge retrieval is to consider
only those edges as existent which do exist in the
recorded scene.

To solve this problem a neighborhood graph is calcu-
lated. Even though all plane segments are defined al-
ready in 3D world coordinates, the neighborhood graph
is built based on image coordinates. This is because the
computational effort for finding neighbors in a 2D pixel
grid is enormously reduced compared to the case of a
3D point cloud. Due to the known transformation be-
tween image and world coordinates, after establishing
the neighborhoods the graph easily can be translated to
the 3D points.



In this graph each segment (plane) defines a vertex. All
vertices, for which the segments i and j are direct neigh-
bors, are connected by an edge ei j. Out of the marginal
3D points between two segments a straight line L̂i j

c is es-
timated by linear regression. Besides, the real intersect-
ing edge between the planes Πi and Π j Li j

c is calculated
analytically. Within the range of adjacent points be-
tween both planes the maximum distance between the
estimated and the analytically calculated edge is deter-
mined. If the maximum distance between both edges
lies below a defined threshold, the edge is considered to
exist.

All retrieved intersecting edges are defined as directed
straight lines. This means the direction vector ~di j of Li j

c
has to be defined with a certain direction. By definition
the segment i is on the left and the segment j on the
right side of the projection of Li j

c onto the depth image
plane in pointing direction.

After defining intersecting edges there will be pixels
that are assigned to the wrong segment. This mean pix-
els of the segment i which are on the right side of Li j

c and
pixels of j which are on the left side of Li j

c . These pix-
els are assigned to the respectively other segment and
the 3D points XW are projected onto the corresponding
plane.

4.2 Floor plane extraction
Before objects can be built, the floor plane has to be
extracted. This is done based on two parameters. The
plane orientation, which is defined by a reference nor-
mal vector~nre f and the distance between the floor plane
and the optical camera center ~c, which is defined by
dre f .

To classify a plane as floor plane the angle between the
plane normal vector and the reference ∆φ has to be un-
derneath a threshold Tφ and the distance to the camera
center ∆d has to be lower than a threshold Tdist .

All plane segments, which are lying underneath the
floor plane, are erased. This of course does not con-
form all scenes but simplifies the processing. Planes un-
derneath the floor plane result, for instance, from stairs
going downwards. In future development these planes
as well as gaps within the floor plane will be considered
because detecting downward stairs and gaps in the floor
is an absolute must for a reliable system.

4.3 Object reconstruction
To build objects out of the plane segments each inter-
secting edge Li j

c is classified to be either a convex or a
concave edge from Kinect’s perspective.

To classify the intersecting edges the normal vectors ~n
of the plane segments have to point to the direction of
the optical camera center~c . This can be realized since

Π1

Π2

(a)

~n1×~n2

~n2 ~n1

(b)

Figure 1: Classification of a concave crossing edges.
(a) Two planes Π1 and Π2 connected by a concave in-
tersecting edge L12

c (red line). (b) Cross product of the
normal vectors~n1 and~n2.

−~n and ~n define the same plane and thus normal vec-
tors, which are pointing away from the optical center,
just can be flipped. Since the intersecting edge Li j

c be-
tween the planes Πi and Π j has a certain direction, such
that Πi is left and Π j is right of the edge in pointing di-
rection, this property is used to classify the edges. If the
cross product of ~ni and ~n j points to the same direction
as the direction vector ~di j of Li j

c , the edge is classified
as convex. Otherwise the edge is classified as concave
(see Fig. 1).

Li j
c =̂

convex if ~ni
‖~ni‖ ×

~n j
‖~n j‖ =

~di j

‖~di j‖

concave else.
(12)

After classifying all edges into convex or concave ob-
jects are built. All planes connected by a convex edge
are combined to one object.

For each object a cuboid shaped bounding box is cal-
culated. To avoid underestimation of the object dimen-
sions the boundaries are chosen such that all 3D points
assigned to the object are included within the cuboid
bounding box. This mostly results in an overestimation
of the object size but nevertheless potential obstacles
never will be neglected.

5 ACCURACY ANALYSIS
In this section two different experiments are shown,
which evaluate the accuracy of the described algorithms
applied to images gathered with Microsoft Kinect.

5.1 Plane accuracy
In the first experiment planar panels (size
19 cm×29 cm) are placed parallel to the depth
image plane of Kinect. Each panel is placed on a
defined position within the world coordinate system
(see Fig. 2(a)). The scene is recorded by the depth
camera of Kinect and the algorithm is applied. Each
panel results in a rectangular object in the reconstructed
scene, defined by its four corner points. Based on
the position of the reconstructed object, the accuracy
of the system can be measured. In this experiment
only the z-component of an object is evaluated since



(a) (b)

Figure 2: Setups for accuracy analysis.

the algorithm will overestimate the boundaries in the
directions xW and yW as described in Section 4.3.

Fig. 3 presents the root mean square error (RMSE)
of the retrieved planes for different distances to Kinect
(blue asterisks). For each corner of a plane the error ei
of the z-component between retrieved and given value
is calculated, resulting in four error values for each
panel. Four panels were recoded in each distance re-
sulting in a total number of N = 16 error values per dis-
tance. Out of these error values the RMSE is calculated
as given in eq. (13).

RMSE =

√
1
N

N

∑
i=1

e2
i (13)

As one can see, the RMSE rises approximately quadrat-
ically with the distance. Nevertheless, even in a dis-
tance of 2.5 m still an RMSE of 1.7 cm is reached.

5.2 Intersecting edge accuracy
In the second experiment the panels are arranged as
shown in Fig. 2(b). The intersecting edge between the
two panels lies on a defined position in the world coor-
dinate system. The scene is recorded by Kinect and the
algorithm is applied. The algorithm calculates an in-
tersecting edge between the two planes resulting from
the panels. The error between the real and the calcu-
lated edge ei is defined as the distance between both
edges at the two marginal points of the edge. Thus, for
each recorded edge two error values are received. For
each distance six objects were recorded, resulting in a
total number of N = 12 error values. For this setup the
RMSE is also calculated as given in eq. (13).

Fig. 3 shows the RMSE for different distances to the
Kinect sensor (red circles). As one can see, only dis-
tances below 1.5 m are evaluated. The reason for that is
the threshold of the RANSAC algorithm, which is in-
creased linearly, dependent on the depth value d. With
rising depth value d, the range of the quantization steps
also rises and thus the accuracy decays. To avoid false
segmentation resulting in many small planes, the seg-
mentation thresholds (Td , Tg, and TRAN) are adjusted.
Thus, the two panels will be segmented as one consec-
utive plane at far distances. Nevertheless, for close dis-
tances up to about 1.5 m experiments show very accu-
rate results.

50 100 150 200 250
0

1

2

3

4

Distance [cm]

R
M

SE
[c

m
]

Planes
Edges

Figure 3: Accuracy analysis. Blue asterisks: RMSE
of retrieved planes. Red circles: RMSE of retrieved
intersecting edges.

6 APPLICATION
In this section the results of the algorithm for two differ-
ent scenes are presented to get a qualitative assessment
of the system.

Fig. 4(a) shows the RGB image of the first recorded
scene. The scene includes several items, which are sup-
posed to be detected and modeled as objects. The ta-
ble in the back of the scene represents a large obstacle,
which should be modeled as one object. Also the trash
bin and the book lying on the floor are supposed to be
detected. These two objects represent dangerous obsta-
cles a person might trip on. Fig. 5(a) shows the RGB
image of the second scene. In this scene a stairway is
recoded. The main goal for this scene is to model the
single steps as objects. Additionally, in both scenes the
floor plane must be classified to reconstruct the scene
correctly.

Fig. 4(b) shows the output of the algorithm correspond-
ing to the scene in Fig. 4(a) and Fig. 5(b) the one
corresponding to Fig. 5(a), respectively. In both fig-
ures an object is represented by its bounding box in 3D
world coordinates. Besides, the floor plane as well as
the boundaries of the field of view are plotted in the fig-
ure. As one can see, in both scenes the floor plane was
detected correctly.

In the first scene (Fig. 4) the objects of main interests,
the book, the trash bin and the table, were detected and
modeled as objects by the algorithm. Nevertheless, the
result of the scene reconstruction is not perfect. For ex-
ample the left edge of the table is separated into several
small object. This comes from the high quantization
of the depth information d for large values. The quan-
tization causes planes standing in a steep angle to the
image plane to result in a stepped gradient, instead of
a homogenous depth gradient. Thus, the single steps
are segmented into single planes by the algorithm in-
stead of one large plane. The reconstructed scene also
includes wrongly modeled objects for the items stand-
ing on the table. Nevertheless, those items are not of
major interest for the task of obstacle detection.

In Fig. 5(b) one can see that this scene was recon-
structed very well, too. The lowest five steps of the
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Figure 4: Result of the obstacle detection system for
test scene 1.

stairway are modeled as separate object. All further
steps are out of range for the depth image system. The
banisters are not modeled very well since they have
very small and reflective surfaces. The left sidewall also
results in several objects since it is separated by the left
banister. This problem has to be minded in the further
development process.

Both scenes show good results of the algorithm. How-
ever, there are scenarios the system cannot handle prop-
erly, especially when there exist lots of undefined areas
within the depth image. These undefined areas result
when items shadow each other but also at the presents
of direct solar irradiation [Ell12a]. Thus, Kinect is in-
appropriate for outdoor scenarios.

7 COMPARISON TO A STATE OF THE
ART SYSTEM

In this Section the algorithm presented in this paper is
compared to the system presented by Rodriguez et al.
in 2012 [Rod12a]. This comparison shows the novel
contribution of our approach to the research field of
ETAs. [Rod12a] is quite comparable to our approach
since it also focuses on simplifying the recorded 3D
point cloud. Besides, the paper contains a very exten-
sive experimental part with feedback from visually im-
paired persons, who were testing their system. Based
on this feedback we can foresee the demand on our sys-
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Figure 5: Result of the obstacle detection system for
test scene 2.

tem and on what we have to focus in further develop-
ments.

The system presented in [Rod12a] is a stereo camera
based system. From the stereo images a disparity map
and thereby a 3D point cloud is calculated. By using
RANSAC for plane fitting, the floor plane is extracted
from the point cloud. All 3D points, which are not part
of the floor plane, are divided into bins. This is done
by projecting all points on the floor plane and defin-
ing a polar grid, which forms the bin margins. Each
bin, which contains a sufficient high amount of points,
is considers as obstacle. The system already has an
audio feedback included, which is based on bone con-
duction technology and thus, does not block the user’s
ears. Even though [Rod12a] is not based on Microsoft
Kinect, it is quite comparable to the approach presented
here. Our approach easily can be adapted to a stereo
camera system just as [Rod12a] can be adapted to Mi-
crosoft Kinect.

At the current state of development, there are two big
advantages of the system presented by Rodriguez et al.
compared to our approach. Firstly, it is already running
in real time and secondly it has already audio feedback
included.

In terms of conveying information about the user’s sur-
rounding our system is much more precise than the one
in [Rod12a]. While Rodriguez et al. have 12 rigid po-



sitions in front of the user where objects can occur, in
our approach objects are placed independently from any
grid in the 3D space. The necessity of placing the ob-
stacles independently from any grid is confirmed by the
feedback of testing persons in [Rod12a]. The visually
impaired, who where testing the system demanded for
more resolution in the depth domain since they were not
able to estimate the relevance of an obstacle.

Another advantage of our approach compared to
[Rod12a] and basically all other existing systems is
that our system tries to preserve the approximate shape
of a recorded object. Thus, in further development
stairs as well as other objects can be classified based
on their characteristic shape. Nevertheless, still an
appropriate interface to the user has to be developed.

8 CONCLUSIONS
The overview of state of the art systems in Section 2
shows that until now there is no operating ETA which
satisfies all demands of blind people. Besides, the
feedback of visually impaired people documented in
[Rod12a] states a demand of high sophisticated ETAs.
This demand is very encouraging for our system to be
developed further.

The accuracy analysis presented in this paper shows
that the developed system works accurately in the range
of a few meters in front of the user. In addition the two
applications presented in Section 6 show the capability
of the system. Scenes can be reconstructed in detail by
primitive cuboid objects and even small objects can be
detected.

In further development our system has to be miniatur-
ized and has to be combined with a feedback system.
Besides, experiments with testing persons have to be
organized.
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